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Abstract

This paper considers confidence intervals for the difference of two binomial proportions. Some
currently used approaches are discussed. A new approach is proposed. Under several generally used
criteria, these approaches are thoroughly compared. The widely used Wald confidence interval (CI)
is far from satisfactory, while the Newcombe’s CI, new recentered CI and score CI have very good
performance. Recommendations for which approach is applicable under different situations are given.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose thatX andY are two independent random variables drawn from two different
populations that both have binomial distributions. The first is of sizem and has success
probabilityp1. The second is of sizen and has success probabilityp2. We are interested in
comparing the difference of the success probability between these two populations.
We letX ∼ binomial(m, p1) andY ∼ binomial(n, p2) and let� = p1− p2. We want to

find the confidence interval with approximate level 1− � for �. When� = 0, the related
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testing problem is equivalent to the classical problem of testing independence in a 2× 2
contingency table.
Because of its wide application in practice many approaches have been provided for this

problem. However, most of them are concentrated on testing the independence hypothesis.
Pearson (1947)proposed the�2 goodness-of-fit test, which is still widely used today. To
improve its performance,Yates (1934)and Pearson (1947) gave different corrections or
modifications to the�2 test.Fisher (1935)proposed the exact test. It is well known but
less convenient for large sample sizes. See alsoBoschloo (1970)andHaber (1986). The
likelihood ratio test was discussed byWilks (1935). Freeman andTukey (1950),Cox (1953)
andGart (1966)gave some other test statistics that have approximately�2 distribution with
one degree of freedom.Barnard (1947)andLiddell (1976)suggested some tests in the
spirit of ordering the sample space.Goodman (1964)explicitly gave a test statistic for the
hypothesis H0 : p1− p2 = �. Some other tests, including Bayesian tests, are discussed in
the literature. For instance, seeHoward (1998), Tango (1998)andAgresti and Caffo (2000).
Chernoff (2002)provides another interesting procedure on testingp1= p2.
The reason we mention the above tests is because of the dual relationship between sta-

tistical tests and confidence sets. We can always obtain a confidence set for the parameter
we are interested by inverting the family of tests . But we cannot always get a clear and
convenient form for the confidence interval of� from these tests.
The well-known Wald confidence interval (CI) can be derived from Goodman’s test, in

which the standard errors are evaluated at the maximum likelihood estimates. Because of
its simplicity and convenience, it has gained nearly universal application in practice and in
textbooks.An alternative procedure is provided by the score test approach. This is based on
inverting the test with the standard errors evaluated at the null hypothesis.Wilson (1927)
gave the score CI for the proportion of one binomial population. For the difference of the
proportions of two populations, we need an estimate of the standard error to avoid the
nuisance parameter. A heuristic idea is to use the constrained maximum likelihood estimate
of the standard error in the test. For simplicity we refer to the resulting CI as the score CI in
this paper. It does not have an easily explained form.Whenm=n,Yule and Kendall (1950)
obtained a CI by inverting the�2 test. For the casem �= n we propose a modified Yule’s
CI by changing the variance estimate.Newcombe (1998)gave a hybrid score interval by
using information from the single score intervals forp1 andp2. Combining informative
Bayesian estimates and the general procedure of inverting tests yields what we refer to as
the Jeffrey’s CI as a pseudoBayesianCI. Inspired by the score test,Agresti andCaffo (2000)
gave another pseudo Bayesian CI. Real Bayesian CIs are not fully explored here because
of their computing difficulty. Finally, we propose a CI that is similar to theWald CI but has
a recentered coefficient. We call it the recentered CI.
After some exploration, we chose six representatives for comparison, Wald CI, New-

combe’s CI, Jeffrey’s CI, Agresti’s CI, score CI and recentered CI. We compare their per-
formance under some plausible criteria in order to give a broad picture for this problem.
Recommendation is given for practical application.
We first give a brief summary of existing CIs in Section 2. Since the Bayesian CI is

different from others, we consider it separately in Section 3. In Section 4, we propose the
recentered CI. All the criteria used to compare the performance of these CIs are listed in
Section 5. Section 6 gives empirical results for the comparisons and describes the various



L. Brown, X. Li / Journal of Statistical Planning and Inference 130 (2005) 359–375 361

figures and tables that support the conclusions of the papers. Recommendation is given in
Section 7. Some related problems are discussed in Section 8.

2. Some existing confidence intervals

Newcombe (1998)made a good summary of the problem and compared eleven methods,
includingmost of the existing confidence intervals.We are not intending to do the same kind
of work. Instead, we pick up some of them which either are widely used or have superior
performance and compare them with some new methods, including our recentered CI and
Agresti and Caffo’s Bayesian CI. Following are the existing intervals which are used for
comparison.
First we introduce some notation. Letqi =1−pi, i =1,2, p̂1=X/m, p̂2=Y/n, and let

q̂i = 1− p̂i , i = 1,2. p̂1 andp̂2 are the MLEs ofp1 andp2, respectively. Letz�/2 denote
the upper�/2 quantile of the standard normal distribution.

1. Thestandard(Wald)CI. Let�̂=p̂1−p̂2, thenT =(�̂−�)/��̂ asymptotically hasstandard

normal distribution. Here�2
�̂
is some consistent estimate of Var(�̂)=p1q1/m+p2q2/n.

Substituting the MLEp̂1q̂1/m+ p̂2q̂2/n in Tas the estimate of Var(�̂), we get theWald
CI of �:

(�̂ ± z�/2

√
p̂1q̂1/m + p̂2q̂2/n). (1)

The Wald CI has the most intuitive motivation. It also has a very simple form and is
widely used in textbooks. Its performance can be somewhat improved in its coverage by
use of some of the other CIs (seeFigs. 1–8).

2. Yule’s CI. In the above CI, we made no assumption about a target value�0 for p1− p2
whenwewere constructing theestimateofVar(�). That is,wedidnot imposeaconstraint
such asp̂1 − p̂2 = � on p̂1 and p̂2 in defining the estimation of Var(�). Assuming
�=0, p̄=(X+Y )/(m+n) is a better estimator ofp=p1=p2 and hence(1/m+1/n)p̄q̄

is a more accurate estimate of Var(�) = (1/m + 1/n)pq. This yieldsYule’s CI

(p̂1− p̂2± z�/2
√

(1/m + 1/n)p̄q̄ ). (2)

We derivedYule’s CI here under the assumption� = 0. But it also performs reasonably
well when|�| is not too big, especially whenm ≈ n.

3. The modified Yule’s CI. We found Yule’s CI performs well whenm = n. If m �= n,
significant deviation of coverage probability from the nominal level appears whenp1 or
p2 is close to 0 or 1. So we need to make some modification to it. Using the weighted
estimatep̌ = (nX/m + mY/n)/(m + n) instead ofp̄ we get the modifiedYule’s CI:

(p̂1− p̂2± z�/2

√
(1/m + 1/n)p̌q̌). (3)

This procedure has smaller bias whenm �= n. Note that whenm = n Yule’s CI is
actually a special case of modified Yule’s CI. Similar to the situation for Yule’s CI, the
standard deviation in the ModifiedYule’s CI converges to the true values only if� = 0
asm ∨ n → ∞.
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Fig. 1. Compare coverage whenp is varying ford = 0,0.2 andm = n = 20.

4. The Newcombe’s interval. Using information from the single sample score intervals for
p1 andp2, Newcombe (1998)gave a hybrid interval. Let(li , ui) be the score confidence
interval forpi , that is,(li , ui) are the roots forpi in the quadratic equationz�/2= (p̂i −
pi)/

√
pi(1− pi)/ni , i = 1,2, n1= m, n2= n. The CI has the form

(
p̂1− p̂2− z�/2

√
l1(1− l1)

m
+ u2(1− u2)

n
,

p̂1− p̂2+ z�/2

√
u1(1− u1)

m
+ l2(1− l2)

n

)
. (4)

In some sense, the estimate of the Var(�) in Newcombe CI is the average value of two
boundary variances.
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Fig. 2. Compare coverage whenp is varying ford = 0,0.2 andm = 13, n = 10.

5. The score-test interval. This interval is based on inverting the test

p̂1− p̂2− �
�̂

= z�. (5)

But here�̂ is the estimate of the standard deviation ofp̂1 − p̂2 under the constraint
p̂1− p̂2= �. More specifically,

�̂2= p̂1(1− p̂1)

m
+ (p̂1− �)(1− p̂1+ �)

n
,

wherep̂1 is the maximum likelihood estimate ofp1 under the constraint̂p1 − p̂2 = �.
It does not have a conveniently expressed form. We use the method of bisection to find
p̂1.
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Fig. 3. Compare coverage whenp is varying ford = 0,0.2 andm = 30, n = 10.

In the case of just one binomial proportion the analogous procedure is due toWilson
(1927). There it has a more convenient, clearly expressed formula and performs quite well.
A score-test interval for a different but relatedmultinomial problemappears inTango (1998).

3. Bayesian confidence intervals

3.1. General idea

Given a prior densityf (p1, p2) for p1, p2, we can construct the Bayesian Confidence
intervals (HPD) for�=p1−p2 through a posterior distribution. Now the posterior density
of p1, p2 is

l(p1, p2) = pX
1 (1− p1)

m−XpY
2 (1− p2)

n−Y f (p1, p2).
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Fig. 4. Compare coverage whend is varying forp = 0.5,0.2 andm = n = 20.

The lower bound can be obtained by solving the equations inu

∫ 1+u

0
l(p1, p1− u)dp1= �/2 if

∫ 1

0
l(p1, p1)dp1> �/2,∫ 1

u

l(p1, p1− u)dp1= �/2 if
∫ 1

0
l(p1, p1)dp1< �/2.

Similarly, we can solve for the upper bound. Generally we cannot get a simple formula for
these Bayesian CIs.
A widely used prior is the independent beta prior (see e.g.Howard (1998))

f (p1, p2) = Cp
�1
1 (1− p1)

�2p
�1
2 (1− p2)

�2,
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Fig. 5. Compare coverage whend is varying forp = 0.5,0.2 andm = 13, n = 10.

whereC is some constant. Howard also proposed a dependent prior

f (p1, p2) = C e−(1/2)u2p�−1
1 (1− p1)

�−1p�−1
2 (1− p2)

�−1,

where

u = 1

�
ln

(
p1(1− p2)

p2(1− p1)

)
.

3.2. Real and pseudo Bayesian CIs

• Jeffrey’s CI
In the one sample situation, the Bayes estimatorp̃ = (X + 1/2)/(m + 1) derived from
Jeffrey’s prior Beta(1/2,1/2) performs very well in constructing the CI ofp, even when
p is close to 0 or 1 (seeBrown et al., 2001). Inspired by this fact, we usẽp1 = (X +
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Fig. 6. Compare coverage whend is varying forp = 0.5,0.2 andm = 30, n = 10.

1/2)/(m + 1) andp̃2 = (Y + 1/2)/(n + 1) instead ofp̂1 andp̂2 as the estimates ofp1
andp2 in the previousT statistic. We call this the Jeffrey’s estimate CI. It has the form

(p̃1− p̃2± z�/2

√
p̃1q̃1/m + p̃2q̃2/n). (6)

It has very good coverage performance, almost uniformly better than the Wald CI.
• Agresti’s CI
Leaning in the conservative direction,Agresti and Caffo (2000)proposeṕ1 = (X +
1)/(m + 2) andṕ2 = (Y + 1)/(n + 2) in the above CI, i.e. adding one success and one
failure for each sample. We call this procedure Agresti’s CI.

• Approximate Jeffrey’s CI
Given an independent Jeffrey’s prior, the posterior distributions ofp1, p2 are

p1|X ∼ Beta(X + 1/2, m − X + 1/2), p2|Y ∼ Beta(Y + 1/2, n − Y + 1/2).
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Fig. 7. Compare width whenp is varying ford = 0,0.2 andm = n = 20.

By normal approximation

p1|X ∼ N
(

p̃1,
p̃1(1− p̃1)

m + 2
)

, p2|Y ∼ N
(

p̃2,
p̃2(1− p̃2)

n + 2
)

,

wherep̃1 = (X + 1/2)/(m + 1) and p̃2 = (Y + 1/2)/(n + 1). Hence we obtain an
approximate Jeffrey’s CI which has the form

(p̃1− p̃2± z�/2

√
p̃1q̃1/(m + 2) + p̃2q̃2/(n + 2)). (7)

It is uniformly shorter than Jeffrey’s CI and does not perform well when the sample size
is small.

• Real Jeffrey’s interval
All above three CIs are not real Bayesian CIs. They only use Bayesian estimates in
constructing the CIs. We may call them pseudo Bayesian CI. Difficulty of calculation
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Fig. 8. Compare width whenp is varying ford = 0,0.2 andm = 30, n = 10.

hinders the convenient application of a real Bayesian CI. However, using numerical
integration and the power of the computer, we tried the real Jeffrey’s CI. The prior is

f (p1, p2) = Cp
1/2
1 (1− p1)

1/2p
1/2
2 (1− p2)

1/2

and the posterior is

l(p1, p2) = p
X+1/2
1 (1− p1)

m−X+1/2pY+1/2
2 (1− p2)

n−Y+1/2.

Results show that this CI does not perform better in terms of coverage than the pseudo
Jeffrey’s CI described above.
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4. Recentered CI

In constructing the Wald confidence interval ofp for a one sample binomial proportion,
we simply invert the test by solving the equation(p̂ − p)/

√
p(1− p)/n = z�/2 in p. But

for two binomial population, the same procedure is no longer applicable, since there is a
nuisance parameterp1 (or equivalentlyp2). However, with reparametrization and some
reasonable approximation, we can still construct tests and invert them to form confidence
intervals.
Without loss of generality, we assume��0. Introduce a new parameterp defined as

p = (np1 + mp2)/(m + n). Thenp1 = p + �m/(m + n), p2 = p − �n/(m + n) and let
q = 1− p. A natural estimate ofp is

p̂ = p̂1/m + p̂2/n

1/m + 1/n
= np̂1+ mp̂2

m + n
.

By simple calculation, the variance of�̂ is

Var(�̂) =
(
1

m
+ 1

n

)
pq − �2

m + n
.

Hence the related estimate of Var(�̂) is

�̂2� =
(
1

m
+ 1

n

)
p̂q̂ − �̂

2

m + n
.

It is easy to show that̂� is asymptotically orthogonal tôp, i.e. the following two statistics

Z1= �̂ − �√
Var(�̂)

, Z2= p̂ − p√
Var(p̂)

are asymptotically independent whenmin(n, m) goes to infinity.We reject H0: p1−p2=�
if |�̂ − �|���̂�, where� is upper�/2 quantile oft distribution with degree of freedom
m + n − 2. Actually we do not have theoretical justification for using thet quantile instead
of zquantile. The empirical results show that usingt does much better than usingzwhenn
andmare small. Inverting this test, i.e. by solving

|�̂ − �| = ��̂�

we can get the corresponding CI.
But considering the definition,p must be less than 1− �m/(m + n) and bigger than

�n/(m + n). Consequently,̂p should satisfy the same conditions (these conditions can
ensurê�� >0, but the inverse is not true). This consideration leads to the truncated estimate

p̃ =
{�n/(m + n) if p̂ <�n/(m + n)

p̂ if �n/(m + n)� p̂�1− �m/(m + n)

1− �m/(m + n) if p̂ >1− �m/(m + n)
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instead ofp̂. The final version of this CI has the form
 �̂
1+ �2/(m + n)

± �
√

(1+ �2/(m + n))(1/m + 1/n)p̃q̃ − �̂
2
/(m + n)

1+ �2/(m + n)


 . (8)

We call it the recentered CI, since it is centered by a value(1+ �2/(m + n))−1. Though it
seems complex, it does have an explicit form, and it performs pretty well.

5. Criteria of comparison

There are several commonly used criteria for evaluating the performance of CIs.

1. Coverage probability

• The average coverage should be close to the nominal level (generally we use 95%;
90% and 99% are also considered).

• The region of poor coverage (e.g., less than 0.93) should be small.
• The absolute deviance or the square root of theL2 distance of coverage probability

DA =
∫

|coverage− �| or DS=
(∫

(coverage− �)2
)1/2

should be small.

2. The expected length of the CI should be as small as possible so long as the coverage
probability generally is greater than or near to the nominal level.

3. The coverage converges to the nominal level uniformly and quickly with the increasing
of the sample size, especially whenp1 or p2 is close to 0 or 1.

4. Simplicity, i.e. easy to remember, easy to calculate, easy to understand and easy to
present.

5. The CI is reasonable, i.e. it is within the domain of�.

In the next section, we mainly focus on the first two standards to describe the performance
of those CIs.

6. Empirical results

Our main objective is to compare the CIs under different situations and provides some
advice in application. A lot of comparison work is needed for these CIs, since there are
four parameters in this problem. Here we precisely calculate the coverage probability and
expected widths of the CIs on a grid of parameter values.
We compare the performance of all the CIs described above under various situations

and three different confidence levels� = 0.01,0.05,0.1. Yule’s CI is dominated by the



372 L. Brown, X. Li / Journal of Statistical Planning and Inference 130 (2005) 359–375

Table 1
Performance under different circumstances

Wald Jeffrey Agresti Newcombe Score Recenter

m = n�25 and� ≈ 0 − + o + + +
m = n�25 and� �= 0 − o + + o +
m = n >25 and� ≈ 0 o o o + + +
m = n >25 and� �= 0 − + + + + +
m �= n�25 and� ≈ 0 − o o + + −
m �= n�25 and� �= 0 − o + + + +
m �= n >25 and� ≈ 0 − + + + + −
m �= n >25 and� �= 0 − + + + + +

Remark: Here� ≈ 0 means|�| <0.1. “+” ,“o” and “−” stand for good, acceptable and poor, respectively. The
comparison is based mainly on the coverage probability forp ∈ (0,1).

Table 2
Coverage:m = n = 10,p is changing,� = 0,0.2, 1− � = 0.95
CI Average error Cov.prob. <0.93 DA DS

� = 0 � = 0.2 � = 0 � = 0.2 � = 0 � = 0.2 � = 0 � = 0.2

Wald −0.023 −0.025 0.722 0.679 0.037 0.025 0.039 0.027
Jeffrey 0.023 −0.003 0.000 0.148 0.023 0.011 0.027 0.018
Agresti 0.023 0.018 0.000 0.000 0.023 0.018 0.027 0.020
Newcombe 0.011 0.004 0.000 0.000 0.018 0.013 0.025 0.017
Score 0.023 0.009 0.000 0.000 0.023 0.009 0.027 0.012
Recentered 0.023 0.018 0.000 0.000 0.023 0.018 0.027 0.020

Remark: Cov.prob. <0.93 gives the percentage of the grid points for which coverage probability are less than
0.93.DA is the average of absolute deviance andDS is the square root of the average of square error.

modified Yule’s CI. Furthermore, the modified Yule’s CI does not do well enough when
m �= n compared to some other CIs. For simplicity, we ignore these CIs and only present
the results of comparing the performance of the following six CIs: Wald CI, Jeffrey’s CI,
Agresti’s CI, Newcombe’s CI, score CI and recentered CI. And in the figures we present,
we always take the confidence level to be 95%.
First we examined the coverage probability. Eight subgroups are considered. The division

is based on whetherm = n or m �= n, m andn are small orm andn are large,� ≈ 0 or
� �= 0. More specifically, we saym is small ifm�25,� ≈ 0 if |�| <0.05. It is of course
not a complete collection. The dividing point 25 and 0.05 are empirical. We drew a lot
of plots within each group and the visual results are summarized inTable 1. By simply
counting the number of “+” and “o”, we can see that Newcombe appears best, with the
score, Agresti, recentered and Jeffrey are generally acceptable. InFigs. 1–6we provide a
few representative plots to display typical results supporting the summary inTable 1.
To verify the results numerically, we list some statistics based on coverage probability in

Table 2. They are average coverage deviance, the percentage that the coverage probability is
less than0.93, theaverageof absolutedevianceand theaverageof squareerror.Heuristically,
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Table 3
Width: p is changing,� = 0, 0.2, 1− � = 0.95
CI m = m = 10 m = n = 30 m = 15, n = 10

� = 0 � = 0.2 � = 0 � = 0.2 � = 0 � = 0.2

Wald 0.57 0.66 0.36 0.40 0.54 0.60
Jeffrey 0.68 0.71 0.38 0.41 0.61 0.65
Agresti 0.65 0.68 0.38 0.40 0.60 0.62
Newcombe 0.72 0.73 0.39 0.41 0.64 0.66
Score 0.64 0.70 0.37 0.41 0.57 0.64
Recentered 0.59 0.68 0.36 0.40 0.54 0.62

the bigger these statistics are, the poorer the CI is. We can see that all the statistics of the
Wald CI are unacceptable. The rest of the CIs are doing well, especially the Newcombe CI.
Second we compare the expected widths of these CIs.Table 3gives the average widths

of these CIs under four special cases. SeeFigs. 7–8for details.Wald and recentered CI have
the smallest width while Newcombe CI is the widest. The other four are in the middle.
Finally, we compare the conservativity and boundary property. Regarding conservativity,

we can see that in many cases, Wald CI is well below the nominal level and the Jeffrey
and Agresti CI are above the nominal level, while all other CIs are fine. Surprisingly, the
coverage of all CIs go to one whenp is close to 0 and 1 except for somem �= n cases.
In summary, we have the following observation from those figures and tables:

• Whenmandn are small, theWald CI is below the nominal level. But it has small width.
• In somecaseswherenandmaresmall, JeffreyandAgresti’sCIarea littlebit conservative.
And their coverage is generally above the nominal level.

• In most of the cases, the score, Newcombe and recentered CI are similar with each other
and do a good job.

• Whenmandnare large, say,m∧n�50, all the CIs are doing well. However, for the case
thatmandn have large common factor and� is small, the recentered CI is not good.

• Generally for fixed�, most of the CIs are very conservative whenp is close to 0 or 1
except for very few cases, see, Wald CI.

• The coverage of all the CIs are symmetric inp aboutp = 0.5 whenm = n and� = 0.
• For fixed�andsmallm, n,Wald, scoreand recenteredhavesmallwidth for allp ∈ (0,1).
Jeffrey and Agresti CI are much wider whenp is close to 0 and 1. Newcombe CI is the
shortest whenp is close to 0.5 but the widest whenp is close to 0 and 1.

• For fixedp and smallm, n, Wald and recentered CI have small width. ModifiedYule CI
much wider than others whenp �= 0.5 andd is big.

• There is some oscillation whend is varying andmandn are small. But for theWald CI,
it can be objectionably large. For most of the procedures, it is negligible.

7. Recommendations

Under most of the circumstances the score, Newcombe and recentered CI perform very
well. We strongly recommend these three intervals (seeTable 1 for details). Roughly
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speaking, whenm andn are small and� ≈ 0, we should use any of these three. Whenm
andn are small and� �= 0, we should use Newcombe or recentered CI. Whenm �= n and
� ≈ 0, we should use score CI or NewcombeCI. Do not use recentered CI ifm is a common
factor ofn or vice visa. Under other circumstances we can use any of them. If simplicity
and conservativity in coverage are the most important issue, Agresti and our Jeffrey CI are
the best choice.

8. Remarks

1. Boundary problem and Poisson modification. In most of the figures we see that the
coverage probability is either too conservative or too low whenp is near 0 or 1− �.
For example, the coverage probability of Jeffrey’s CI is always 1 atp = 0 or 1 when
m = n and� = 0. When� �= 0, it is always below 0.95 but converges to 0.95 quickly
with increasing ofm = n. Recentered CI behaves similarly but is always conservative
at the boundaries whether� = 0 or not. We should be careful and it is better to choose
conservative CIs whenp is expected to be close to 0 or 1. It also suggests the desirability
of making some modifications of those CIs at the boundary. One method is to apply
a Poisson modification to the boundary (seeBrown et al., 2001). We applied such a
modification to those six CIs. Only the boundary performance of Jeffrey’s andAgresti’s
CIs are improved a little bit while those of all other CIs remain virtually the same.

2. Bias whenm �= n. From the figures the coverage probability is not only asymmetric
but also biased whenm �= n and� �= 0. When min(m, n) is large, this phenomenon
becomes insignificant. When max(m, n) is small, it is really a problem. However, for a
conservative objective, one can use Agresti’s CI under this situation.

3. Limiting behavior of coverage prob. whenm, n → ∞ or p → 0,1. In most circum-
stances the poorest point of coverage probability is in the neighborhood ofp or q = 0 or
1. For example, the coverage probability of all those intervals is always 1 when� = 0
andp = 0.

4. Oscillation and Edgeworth expansion. In the one sample situation, oscillation of the
coverage probability is a serious problem for Wald CI for the proportion, seeBrown
et al. (2002). But for the two sample situation, it is not so serious a problem. In plots
of the coverage as a function ofp for fixed d the coverage function is continuous and
smooth. This is not surprising sincep is only a nuisance parameter for such plots. In
plots of coverage as a function ofd for fixed p (and fixedm andn) there is noticeable
oscillation, but it is qualitatively less pronounced than that observed in the one parameter
situation. We found that there may exist significant oscillation in� whenm ≈ n are
small. Even when it exists, it seems always acceptable. Actually, according to empirical
results the magnitude of oscillation of Jeffrey’s and recentered CIs are very small when
� is not so big, say, less than 0.4. In practice it is rarely seen that� is bigger than 0.4.
So we need not worry about oscillation in our problem.

5. Other exponential distributions. Like Brown et al. (2003), one could consider extending
the current results to the problem of comparing the means of two samples with other
distributions in simple exponential families.
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